
Autonomous Testing:
Differentiating Fact from Fiction

AI Based Test Automation Explained

www.testim.io02

Table of
Contents

1 Introduction

2 E2E testing: A nightmare for most dev teams

3 How AI can help resolve E2E testing challenges

4 Risk Management

5 Summery

6 About the Author

www.testim.io03

Similar to the concept of self-driving cars, autonomous testing refers to

the use of software to aid dev teams in testing applications. With respect

to test automation, autonomous testing is applicable in the areas of risk

management, maintenance, and test authoring. By streamlining and

automating quality assurance, autonomous testing is revolutionizing the

software development process, enabling engineering teams to deliver

products much faster to clients. With autonomous testing capabilities,

the velocity of dev teams is only limited by how fast they can write code.

While the first of the Tesla models wasn’t self-driving, subsequent releases

(powered by AI) significantly improved on the user experience, gradually

bringing the product closer to becoming truly autonomous. The same will

hold true for autonomous software testing.

This whitepaper discusses how AI can help resolve
the tradeoffs between delivering a flawless user
experience and achieving faster release velocity,
with emphasis on functional E2E testing.

Introduction

www.testim.io04

E2E testing: A nightmare
for most dev teams

A 2018 StackOverflow survey indicates that 48.2% of

developers say they are full-stack while 37.8% claim to be

front end developers.

The rise in the number of front end developers shows that

key business logic seems to reside more and more on an

application’s front end, thus increasing the complexity of

testing this component before release.

As such, functional end-to-end testing has become one of

the biggest challenges to software quality — as evidenced

by the rise in front end development.

Here’s why:

Authoring an effective, stable test takes nearly as much

time as developing the feature being tested. This increases

the overall time spent on quality assurance, thus increasing

time to market.

Test authoring is slow

In most software development organizations, over 30% of a

tester’s workload is focused on maintaining flakey tests. For

instance, each time the UI changes, tests may fail and need

fixing. This makes test maintenance a tedious and highly-

repetitive task.

Test maintenance sucks

In today’s development environment, it’s easier to find full

stack developers than automation engineers. Coupled with

the fact that the typical developer doesn’t like to spend a lot

of time on testing activities and manual testers find coding

challenging and we have a gap in skill sets needed for

effective E2E testing.

Skill set

www.testim.io05

How AI can help
resolve E2E testing
challenges

The perfect solution to these challenges is a fully autonomous testing

environment where tests are diagnosed, authored and maintained automatically.

However, test automation hasn’t gotten to that point…yet. Nevertheless, AI has

made it possible to speed up authoring time while significantly reducing the time

it takes to maintain and repair tests.

Before explaining how AI can help resolve the functional E2E nightmare, we’ll

take a look at the different levels of assistance in testing activities and how they

can get us closer to true autonomous testing.

Level 0
Manual Authoring

Engineering teams author

and maintain tests.

Level 2
Semi-Autonomous

While some human

assistance is required,

machines write and maintain

tests by observing how

humans interact with apps.

Level 1
Teach by example

Machines help increase the

speed of test authoring while

improving test stability.

Level 3
Fully-Autonomous

Machines automatically and

autonomously build and

maintain tests.

www.testim.io06

How are these levels applicable to functional E2E testing? The following graphic

shows the elements that make up E2E tests.

SETUP ACTION VALIDATE / WAIT

www.testim.io07

We’ll now review each level.

Action

Most E2E tests consists of a series of actions on the UI. The action could be

entering text, scrolling, finger taps (for mobile) or a click (for web apps).

Manual Authoring (Level 0)

Level 0 refers to a typical development environment where there’s no automated

assistance during test authoring. Engineering teams write everything from scratch

and also have to maintain tests with every modification of the UI.

To do this, it’s assumed that humans must review the entire source code (locators

inclusive). There were query languages (such as XPath and CSS-Selector) that

could be used to identify the position of elements on an app’s UI. However, these

languages could only focus on a fixed number of UI properties, making them too

rigid to handle further modifications to the code. We’ll refer to such languages as

static locators.

Over time, there have been several efforts to record & play back user interactions.

However, these attempts eventually failed due to the limitations of the static

locators being used at the time. The results were much better if developers wrote

the tests since they had more knowledge of the app’s source code and could

leverage that knowledge to write better selectors. Also, there was improved

maintenance with the underlying technology since no reuse were generated.

www.testim.io08

Manual testers are able to write E2E tests and more importantly, they only need

to train the machine once. The machine introspects the entire DOM to extract

attributes and generate locators by following every action a tester makes.

Although this doesn’t require coding, users must have a basic knowledge of

engineering since they need to reuse and maybe input parameters if values vary

with each call.

Teach by example (Level 1)

By moving away from the concept of static locators, we can innovate new and

better locator strategies and allow machines to make final decisions. Artificial

intelligence can handle large numbers of locators, and assign scores to them

based on stability and quality, enabling prioritization. Besides the ability to handle

a large volume of UI properties, AI is impartial and not biased.

One of the attributes that makes AI so successful at authoring tests is its

ability to learn from previous executions. This means that your tests become

incrementally better and stable after each iteration.

After executing millions (possibly billions) of tests across hundreds of companies

and thousands of use cases, the team at Testim.io was able to put together

new locator strategies that are applicable to all use cases and project scenarios.

Whether you’re using Vue.js, React.js, Angular.js, or other frameworks, you can

leverage our tool to get much better results. Our tool is based on in-depth

knowledge and practical experience gained from running hundreds of millions

of iterations. This means we know which parameters are ideal and indispensable

(and those that are not) for your use case.

www.testim.io09

BDD (Behavior Driven Development) Support

This was created to facilitate the shifting left paradigm, where tests are executed

as far to the left as possible. This led to the testing of product specs by various

teams including QA and Development. While such tests don’t occur often,

teams sometimes use tools (such as Cucumber) to write product specifications

in human-readable language and then leverage another platform that automates

UI (such as Selenium) to translate those sentences into actions.

In such instances, AI can be used to automatically locate the elements. It does

this by reviewing the properties of each UI element and attempting to deduce

the element that fits best. For instance, extract “set userid to Joe” and look for an

input with properties that’s similar to “userid” and set its value to “Joe.” However,

this would require lots of human interaction for large apps with a high volume of

elements on the screen.

www.testim.io10

Visual Driven Development

While the concept of authoring tests using the visual design mocks of an app

isn’t new, it was viewed as unstable considering the fact that pixels are just one

of many properties and are very fragile. With an AI-powered system delivering

continuous improvement after every execution, all that’s needed is for the

system to review the app once and extract all properties related to the element.

Once this is done, there is no need to author tests using the visual aspects of the

app. Technological advancements indicate that this would become feasible in

the not too distant future.

www.testim.io11

Semi-Autonomous (Level 2)

In this instance, tests can be authored by the system when it connects to staging

or production environments and observes the way humans interact with the app

— either QA/dev team interacting with the app in one of the development cycles

or real users during production. One of the major improvements of Level 2 over

Level 1 is that AI understands that there are repeatable actions. So, it can help

cluster these actions into groups and convert them into reusable user scenarios.

LEARN BY OBSERVATION & REAL

CUSTOMERS ON PRODUCTION

AGGREGATE USER ACTIONS INTO

FLOWS (REUSED COMPONENTS)

TESTS PRODUCED FROM

(REUSED) FLOWS

Fully-Autonomous (Level 3)

At this level, there is no need for human intervention — the system undertakes

test authoring by itself (except where login credentials are needed). This level

could also be described as monkey testing where the app clicks randomly to go

through the various states of the application. While this can be relatively easy

for simple apps, it can be extremely difficult for others…for instance, a complex

application like Paint.

While there are no major differences between validation and a wait-for (inability

to reach a specified state means failure in both instances), we are going to

separate them into two sections.

www.testim.io12

Wait fors

Fully-Autonomous

Since the system is able

to randomly add delays

between executions and train

automatically, it becomes

fairly easy to achieve a fully

autonomous system.

Since virtually all apps are synchronous, users are only able to click on elements

by following visual prompts on a screen. Most platforms make use of implicit

waits — where no action is taken until the element becomes visible — to achieve

this. In most cases, this means waiting for a specific state (such as waiting for

a dropdown to populate with a list that was dynamically requested from the

application’s database/backend).

Teach by example

An AI-powered system that

observes live users interacting

with applications can see

patterns and derive insights

much better than humans.

Such patterns could include

instances where database/

network requests have

been sent and need to be

processed or wait-fors where

elements must become visible

before subsequent actions

can be performed.

Manual Authoring

At this point, tests are

authored manually and no

attention is paid to wait-

fors until tests begin to fail.

Most testers add “sleep for X

seconds” functions in their

apps resulting in flakey tests.

Also, the addition of such

random sleeps can negatively

impact the speedy execution

of tests.

Semi-Autonomous

The system could review

previous failed iterations and

suggest improvements to test

authoring.

www.testim.io13

Validations

After performing the necessary actions, the next step involves validation. This

means checking to see if the intended state has been achieved. This involves

three steps:

Element style and text validation involves checking to see if certain elements in

the UI have a specified value while pixel validation involves taking a snapshot

of all or part of the screen and comparing it to a baseline that contains the

expected results.

Style validation

The state of all visual properties is visually tested by style validation. One

example of this kind of validation is the Galen framework where you can verify

certain properties — for instance, verifying that the width of an element is 15px

or is located a certain distance from a neighboring element.

Manual Authoring

A lot of software development organizations are still at this level where validation

requires a substantial amount of manual effort — usually accomplished by

extracting text from the UI and using a relevant function (such as an ad hoc

regex or the equal method) to compare values.

However, Pixel Validation and Style Validation are fragile and cumbersome

methods and not recommended by industry experts. Style validation creates

numerous validations for every page, making it cumbersome to maintain while

the issue with pixel validation arises from two major factors

¨¨ The non-deterministic nature of display adapters which generates slightly

different results for each iteration. However, these variations (caused by

subpixels shifts and anti-aliasing) are unnoticeable to the human eye.

¨¨ Too much validation caused by taking a snapshot of the entire page (every

location, color and text). This leads to high maintenance especially for

pages where elements change frequently.

¨¨ Conducting text validation at the DOM level (regex, string compare, etc.).

¨¨ Validating CSS properties(distance between elements, color, height, etc.).

¨¨ Checking the rendered pixels.

www.testim.io14

Teach by example

At this point, human intervention is still needed to help filter out regions

consisting of random values (like time and date) and other types of noise.

Pixel validation still remains the focus at this stage where improvements in the

system’s prediction abilities results in much lower false positives.

TDD

As the system’s accuracy in anticipating variations continue to increase, it will

become easier for dev teams to specify the level of variations that acceptance

tests can accommodate. Style validation can be invaluable at this point where

design editing software (e.g. Photoshop) can be used to directly generate and

add it to the test.

Semi-Autonomous

By enabling automatic maintenance for validations, we’re gradually approaching

the semi-autonomic point. For instance, changing logos can affect up to 5000

UI screens. However, the system can determine that such a modification is a

single universal change, rather than a bug. As such, there’s no need to review

5000 snapshots and manually approve each one.

Fully-Autonomous

In this instance, deep learning can get us closer to where we want to be — it can

automatically verify that a page’s alignment, font size, and structure looks good

or help detect any problems. However, it would be challenging (nigh impossible)

to automatically generate accurate answers to every query.

www.testim.io15

Setup

This relates to an application’s starting point before the execution of action(s)

that modify its initial state.

Manual Authoring

Most inexperienced testers fail to take into consideration an application’s

initial state when authoring tests, thus leading to a lot of failed tests. This is

problematic for most organizations, especially those that write their own ad

hoc code.

Teach by example

While dumping and restoring DBs before each test run

appears easy for most systems, failures will start occurring when tests are run

in parallel. The solution is leveraging optimization to review the database and

determine the minimal projection needed to execute tests. However, this isn’t

feasible in load testing applications and could result in more problems due to

the precipitation of false negatives. As such, this option should only be used to

speed up test optimization in the early stages, not for full acceptance tests.

AUTOMATIC RESPONSE

1

2

CALL TO SERVER ARE RECORDED

RESPOND WITH MOCKS

TESTS’ UI
INTERACTION

TESTS’ UI
INTERACTION

RECORD
SERVER RESPONSE

PLAY
SERVER RESPONSE

SERVERS

SERVERS

www.testim.io16

Semi-Autonomous

The system can create mockups to enable faster testing by observing the

network and saving ongoing communication between the app’s components

and services. For instance, if there were code changes on the app’s front end,

it’s faster and more efficient to have calls to the server or microservices mocked

up and replaced with saved data than setting up a database and server. This is

particularly useful in cases where we want to recreate an instance where the

server returns an error and the validated error message is displayed to the user.

While this will require some level of human intervention, AI can help generate

dynamic content that users will understand and automatically alter the response

depending on the kind of error encountered.

Fully-Autonomous

One of the best ways to generate test cases (and the data needed for test

executions) is by using model-based testing. Although model-based testing is

mature, it is a rarely used method because dev teams must model the entire app

being tested. This fact hinders its adoption and greatly reduces the ROI.

By leveraging AI, systems can understand the interrelationship between

components, services and objects thereby automatically creating the model and

making it easier to automate test authoring.

While this sounds complex and implausible, there are indications that semi-

autonomous versions (which observes user interactions with apps and derives

accurate insights and predictions) will be released very soon.

www.testim.io17

Risk Management

QA is all about the needs of customers and end users. Whether it is testing

software functionality, enabling a flawless user experience or protecting their

data, it all comes down to managing risk. While many companies leverage code

coverage as a way to reduce risk in functional testing, there’s a much better

approach.

Connecting your apps and production environment to your testing cycle will

not only help resolve challenges with test authoring but they can give dev teams

insights into areas where they should focus their testing on (for regression).

To maximize productivity, it’s essential that teams review the areas that are most

critical to the success of a business or at least, those scenarios that occur most

frequently. Hopefully, there will be less focus on code coverage and more on

user coverage in order to test what customers are going through.

www.testim.io18

Summary

With AI helping dev teams gradually achieve Autonomous Testing, it is hoped

that the quality/velocity dilemma facing software development organizations

will finally be eliminated. Autonomous testing will improve software quality by

helping to connect production apps and test authoring before mapping them

to real user flows, making it easier to maximize user coverage. Also, it will

facilitate a risk-based approach thus enabling engineering teams make better

data-driven decisions.

At Testim, our biggest differentiator is the use of AI to proactively fix issues

(through a self-healing mechanism) while reducing the amount of maintenance

to be done by our clients. We also increase development velocity for our

customers by making it easier to author user scenarios within shorter periods

of time, thus increasing release velocity and enabling faster time to market. In

essence, our autonomous testing tool helps facilitate a much brighter future for

software quality.

Oren has over 20 years of experience in the software industry,

building mostly test-related products for developers at IBM, Wix,

Cadence, Applitools, and Testim.io. In addition to being a busy

entrepreneur, Oren is a community activist and and the co-organizer

of the Selenium-Israel meetup and the Israeli Google Developer

Group meetup. He has taught at Technion University, and mentored

at the Google Launchpad Accelerator.

About the Author

Oren Rubin

Thank You
For more information

contact us at info@testim.io

